Semigroups is a collection of papers dealing with models of classical statistics, sequential computing machine, inverse semi-groups. One paper explains the structure of inverse semigroups that leads to P-semigroups or E-unitary inverse semigroups by utilizing the P-theorem of W.D. Nunn. Other papers explain the characterization of divisibility in the category of sets in terms of images and relations, as well as the universal aspects of completely simple semigroups, including amalgamation, the lattice of varieties, and the Hopf property. Another paper explains finite semigroups which are extensions of congruence-free semigroups, where their set of congruences forms a chain. The paper then shows how to construct such semigroups. A finite semigroup (which is decomposable into a direct product of cyclic semigroups which are not groups) is actually uniquely decomposable. One paper points out when a finite semigroup has such a decomposition, and how its non-group cyclic direct factors, if any, can be found. The collection can prove useful for mathematicians, statisticians, students, and professors of higher mathematics or computer science.